direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C4×C33⋊C2, C62.158D6, (C6×C12)⋊17S3, (C3×C12)⋊25D6, C33⋊18(C22×C4), (C32×C12)⋊18C22, C33⋊5C4⋊14C22, (C32×C6).96C23, (C3×C62).67C22, C6⋊2(C4×C3⋊S3), C12⋊8(C2×C3⋊S3), (C3×C6×C12)⋊13C2, (C3×C6)⋊11(C4×S3), C32⋊18(S3×C2×C4), (C2×C12)⋊5(C3⋊S3), (C32×C6)⋊12(C2×C4), C6.40(C22×C3⋊S3), (C2×C33⋊5C4)⋊11C2, (C3×C6).185(C22×S3), C22.9(C2×C33⋊C2), C2.1(C22×C33⋊C2), (C22×C33⋊C2).4C2, (C2×C33⋊C2).21C22, C3⋊3(C2×C4×C3⋊S3), (C2×C6).47(C2×C3⋊S3), SmallGroup(432,721)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C32×C6 — C2×C33⋊C2 — C22×C33⋊C2 — C2×C4×C33⋊C2 |
C33 — C2×C4×C33⋊C2 |
Generators and relations for C2×C4×C33⋊C2
G = < a,b,c,d,e,f | a2=b4=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf=c-1, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 3720 in 756 conjugacy classes, 243 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C22×C4, C3⋊S3, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C33, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, S3×C2×C4, C33⋊C2, C32×C6, C32×C6, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C33⋊5C4, C32×C12, C2×C33⋊C2, C3×C62, C2×C4×C3⋊S3, C4×C33⋊C2, C2×C33⋊5C4, C3×C6×C12, C22×C33⋊C2, C2×C4×C33⋊C2
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C3⋊S3, C4×S3, C22×S3, C2×C3⋊S3, S3×C2×C4, C33⋊C2, C4×C3⋊S3, C22×C3⋊S3, C2×C33⋊C2, C2×C4×C3⋊S3, C4×C33⋊C2, C22×C33⋊C2, C2×C4×C33⋊C2
(1 148)(2 145)(3 146)(4 147)(5 143)(6 144)(7 141)(8 142)(9 198)(10 199)(11 200)(12 197)(13 202)(14 203)(15 204)(16 201)(17 206)(18 207)(19 208)(20 205)(21 210)(22 211)(23 212)(24 209)(25 166)(26 167)(27 168)(28 165)(29 115)(30 116)(31 113)(32 114)(33 176)(34 173)(35 174)(36 175)(37 180)(38 177)(39 178)(40 179)(41 184)(42 181)(43 182)(44 183)(45 188)(46 185)(47 186)(48 187)(49 192)(50 189)(51 190)(52 191)(53 109)(54 110)(55 111)(56 112)(57 169)(58 170)(59 171)(60 172)(61 193)(62 194)(63 195)(64 196)(65 123)(66 124)(67 121)(68 122)(69 127)(70 128)(71 125)(72 126)(73 131)(74 132)(75 129)(76 130)(77 135)(78 136)(79 133)(80 134)(81 137)(82 138)(83 139)(84 140)(85 119)(86 120)(87 117)(88 118)(89 151)(90 152)(91 149)(92 150)(93 155)(94 156)(95 153)(96 154)(97 159)(98 160)(99 157)(100 158)(101 163)(102 164)(103 161)(104 162)(105 213)(106 214)(107 215)(108 216)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)(193 194 195 196)(197 198 199 200)(201 202 203 204)(205 206 207 208)(209 210 211 212)(213 214 215 216)
(1 110 20)(2 111 17)(3 112 18)(4 109 19)(5 77 14)(6 78 15)(7 79 16)(8 80 13)(9 168 74)(10 165 75)(11 166 76)(12 167 73)(21 91 58)(22 92 59)(23 89 60)(24 90 57)(25 130 200)(26 131 197)(27 132 198)(28 129 199)(29 97 40)(30 98 37)(31 99 38)(32 100 39)(33 106 96)(34 107 93)(35 108 94)(36 105 95)(41 87 101)(42 88 102)(43 85 103)(44 86 104)(45 65 139)(46 66 140)(47 67 137)(48 68 138)(49 71 64)(50 72 61)(51 69 62)(52 70 63)(53 208 147)(54 205 148)(55 206 145)(56 207 146)(81 186 121)(82 187 122)(83 188 123)(84 185 124)(113 157 177)(114 158 178)(115 159 179)(116 160 180)(117 163 184)(118 164 181)(119 161 182)(120 162 183)(125 196 192)(126 193 189)(127 194 190)(128 195 191)(133 201 141)(134 202 142)(135 203 143)(136 204 144)(149 170 210)(150 171 211)(151 172 212)(152 169 209)(153 175 213)(154 176 214)(155 173 215)(156 174 216)
(1 49 29)(2 50 30)(3 51 31)(4 52 32)(5 48 108)(6 45 105)(7 46 106)(8 47 107)(9 43 57)(10 44 58)(11 41 59)(12 42 60)(13 137 34)(14 138 35)(15 139 36)(16 140 33)(17 61 37)(18 62 38)(19 63 39)(20 64 40)(21 165 86)(22 166 87)(23 167 88)(24 168 85)(25 117 211)(26 118 212)(27 119 209)(28 120 210)(53 128 158)(54 125 159)(55 126 160)(56 127 157)(65 95 78)(66 96 79)(67 93 80)(68 94 77)(69 99 112)(70 100 109)(71 97 110)(72 98 111)(73 102 89)(74 103 90)(75 104 91)(76 101 92)(81 173 202)(82 174 203)(83 175 204)(84 176 201)(113 146 190)(114 147 191)(115 148 192)(116 145 189)(121 155 134)(122 156 135)(123 153 136)(124 154 133)(129 162 149)(130 163 150)(131 164 151)(132 161 152)(141 185 214)(142 186 215)(143 187 216)(144 188 213)(169 198 182)(170 199 183)(171 200 184)(172 197 181)(177 207 194)(178 208 195)(179 205 196)(180 206 193)
(1 80 43)(2 77 44)(3 78 41)(4 79 42)(5 104 17)(6 101 18)(7 102 19)(8 103 20)(9 29 93)(10 30 94)(11 31 95)(12 32 96)(13 85 110)(14 86 111)(15 87 112)(16 88 109)(21 72 138)(22 69 139)(23 70 140)(24 71 137)(25 157 175)(26 158 176)(27 159 173)(28 160 174)(33 167 100)(34 168 97)(35 165 98)(36 166 99)(37 108 75)(38 105 76)(39 106 73)(40 107 74)(45 92 62)(46 89 63)(47 90 64)(48 91 61)(49 67 57)(50 68 58)(51 65 59)(52 66 60)(53 201 118)(54 202 119)(55 203 120)(56 204 117)(81 209 125)(82 210 126)(83 211 127)(84 212 128)(113 153 200)(114 154 197)(115 155 198)(116 156 199)(121 169 192)(122 170 189)(123 171 190)(124 172 191)(129 180 216)(130 177 213)(131 178 214)(132 179 215)(133 181 147)(134 182 148)(135 183 145)(136 184 146)(141 164 208)(142 161 205)(143 162 206)(144 163 207)(149 193 187)(150 194 188)(151 195 185)(152 196 186)
(1 148)(2 145)(3 146)(4 147)(5 120)(6 117)(7 118)(8 119)(9 121)(10 122)(11 123)(12 124)(13 161)(14 162)(15 163)(16 164)(17 55)(18 56)(19 53)(20 54)(21 216)(22 213)(23 214)(24 215)(25 45)(26 46)(27 47)(28 48)(29 192)(30 189)(31 190)(32 191)(33 151)(34 152)(35 149)(36 150)(37 126)(38 127)(39 128)(40 125)(41 136)(42 133)(43 134)(44 135)(49 115)(50 116)(51 113)(52 114)(57 155)(58 156)(59 153)(60 154)(61 160)(62 157)(63 158)(64 159)(65 200)(66 197)(67 198)(68 199)(69 177)(70 178)(71 179)(72 180)(73 84)(74 81)(75 82)(76 83)(77 183)(78 184)(79 181)(80 182)(85 142)(86 143)(87 144)(88 141)(89 176)(90 173)(91 174)(92 175)(93 169)(94 170)(95 171)(96 172)(97 196)(98 193)(99 194)(100 195)(101 204)(102 201)(103 202)(104 203)(105 211)(106 212)(107 209)(108 210)(109 208)(110 205)(111 206)(112 207)(129 138)(130 139)(131 140)(132 137)(165 187)(166 188)(167 185)(168 186)
G:=sub<Sym(216)| (1,148)(2,145)(3,146)(4,147)(5,143)(6,144)(7,141)(8,142)(9,198)(10,199)(11,200)(12,197)(13,202)(14,203)(15,204)(16,201)(17,206)(18,207)(19,208)(20,205)(21,210)(22,211)(23,212)(24,209)(25,166)(26,167)(27,168)(28,165)(29,115)(30,116)(31,113)(32,114)(33,176)(34,173)(35,174)(36,175)(37,180)(38,177)(39,178)(40,179)(41,184)(42,181)(43,182)(44,183)(45,188)(46,185)(47,186)(48,187)(49,192)(50,189)(51,190)(52,191)(53,109)(54,110)(55,111)(56,112)(57,169)(58,170)(59,171)(60,172)(61,193)(62,194)(63,195)(64,196)(65,123)(66,124)(67,121)(68,122)(69,127)(70,128)(71,125)(72,126)(73,131)(74,132)(75,129)(76,130)(77,135)(78,136)(79,133)(80,134)(81,137)(82,138)(83,139)(84,140)(85,119)(86,120)(87,117)(88,118)(89,151)(90,152)(91,149)(92,150)(93,155)(94,156)(95,153)(96,154)(97,159)(98,160)(99,157)(100,158)(101,163)(102,164)(103,161)(104,162)(105,213)(106,214)(107,215)(108,216), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216), (1,110,20)(2,111,17)(3,112,18)(4,109,19)(5,77,14)(6,78,15)(7,79,16)(8,80,13)(9,168,74)(10,165,75)(11,166,76)(12,167,73)(21,91,58)(22,92,59)(23,89,60)(24,90,57)(25,130,200)(26,131,197)(27,132,198)(28,129,199)(29,97,40)(30,98,37)(31,99,38)(32,100,39)(33,106,96)(34,107,93)(35,108,94)(36,105,95)(41,87,101)(42,88,102)(43,85,103)(44,86,104)(45,65,139)(46,66,140)(47,67,137)(48,68,138)(49,71,64)(50,72,61)(51,69,62)(52,70,63)(53,208,147)(54,205,148)(55,206,145)(56,207,146)(81,186,121)(82,187,122)(83,188,123)(84,185,124)(113,157,177)(114,158,178)(115,159,179)(116,160,180)(117,163,184)(118,164,181)(119,161,182)(120,162,183)(125,196,192)(126,193,189)(127,194,190)(128,195,191)(133,201,141)(134,202,142)(135,203,143)(136,204,144)(149,170,210)(150,171,211)(151,172,212)(152,169,209)(153,175,213)(154,176,214)(155,173,215)(156,174,216), (1,49,29)(2,50,30)(3,51,31)(4,52,32)(5,48,108)(6,45,105)(7,46,106)(8,47,107)(9,43,57)(10,44,58)(11,41,59)(12,42,60)(13,137,34)(14,138,35)(15,139,36)(16,140,33)(17,61,37)(18,62,38)(19,63,39)(20,64,40)(21,165,86)(22,166,87)(23,167,88)(24,168,85)(25,117,211)(26,118,212)(27,119,209)(28,120,210)(53,128,158)(54,125,159)(55,126,160)(56,127,157)(65,95,78)(66,96,79)(67,93,80)(68,94,77)(69,99,112)(70,100,109)(71,97,110)(72,98,111)(73,102,89)(74,103,90)(75,104,91)(76,101,92)(81,173,202)(82,174,203)(83,175,204)(84,176,201)(113,146,190)(114,147,191)(115,148,192)(116,145,189)(121,155,134)(122,156,135)(123,153,136)(124,154,133)(129,162,149)(130,163,150)(131,164,151)(132,161,152)(141,185,214)(142,186,215)(143,187,216)(144,188,213)(169,198,182)(170,199,183)(171,200,184)(172,197,181)(177,207,194)(178,208,195)(179,205,196)(180,206,193), (1,80,43)(2,77,44)(3,78,41)(4,79,42)(5,104,17)(6,101,18)(7,102,19)(8,103,20)(9,29,93)(10,30,94)(11,31,95)(12,32,96)(13,85,110)(14,86,111)(15,87,112)(16,88,109)(21,72,138)(22,69,139)(23,70,140)(24,71,137)(25,157,175)(26,158,176)(27,159,173)(28,160,174)(33,167,100)(34,168,97)(35,165,98)(36,166,99)(37,108,75)(38,105,76)(39,106,73)(40,107,74)(45,92,62)(46,89,63)(47,90,64)(48,91,61)(49,67,57)(50,68,58)(51,65,59)(52,66,60)(53,201,118)(54,202,119)(55,203,120)(56,204,117)(81,209,125)(82,210,126)(83,211,127)(84,212,128)(113,153,200)(114,154,197)(115,155,198)(116,156,199)(121,169,192)(122,170,189)(123,171,190)(124,172,191)(129,180,216)(130,177,213)(131,178,214)(132,179,215)(133,181,147)(134,182,148)(135,183,145)(136,184,146)(141,164,208)(142,161,205)(143,162,206)(144,163,207)(149,193,187)(150,194,188)(151,195,185)(152,196,186), (1,148)(2,145)(3,146)(4,147)(5,120)(6,117)(7,118)(8,119)(9,121)(10,122)(11,123)(12,124)(13,161)(14,162)(15,163)(16,164)(17,55)(18,56)(19,53)(20,54)(21,216)(22,213)(23,214)(24,215)(25,45)(26,46)(27,47)(28,48)(29,192)(30,189)(31,190)(32,191)(33,151)(34,152)(35,149)(36,150)(37,126)(38,127)(39,128)(40,125)(41,136)(42,133)(43,134)(44,135)(49,115)(50,116)(51,113)(52,114)(57,155)(58,156)(59,153)(60,154)(61,160)(62,157)(63,158)(64,159)(65,200)(66,197)(67,198)(68,199)(69,177)(70,178)(71,179)(72,180)(73,84)(74,81)(75,82)(76,83)(77,183)(78,184)(79,181)(80,182)(85,142)(86,143)(87,144)(88,141)(89,176)(90,173)(91,174)(92,175)(93,169)(94,170)(95,171)(96,172)(97,196)(98,193)(99,194)(100,195)(101,204)(102,201)(103,202)(104,203)(105,211)(106,212)(107,209)(108,210)(109,208)(110,205)(111,206)(112,207)(129,138)(130,139)(131,140)(132,137)(165,187)(166,188)(167,185)(168,186)>;
G:=Group( (1,148)(2,145)(3,146)(4,147)(5,143)(6,144)(7,141)(8,142)(9,198)(10,199)(11,200)(12,197)(13,202)(14,203)(15,204)(16,201)(17,206)(18,207)(19,208)(20,205)(21,210)(22,211)(23,212)(24,209)(25,166)(26,167)(27,168)(28,165)(29,115)(30,116)(31,113)(32,114)(33,176)(34,173)(35,174)(36,175)(37,180)(38,177)(39,178)(40,179)(41,184)(42,181)(43,182)(44,183)(45,188)(46,185)(47,186)(48,187)(49,192)(50,189)(51,190)(52,191)(53,109)(54,110)(55,111)(56,112)(57,169)(58,170)(59,171)(60,172)(61,193)(62,194)(63,195)(64,196)(65,123)(66,124)(67,121)(68,122)(69,127)(70,128)(71,125)(72,126)(73,131)(74,132)(75,129)(76,130)(77,135)(78,136)(79,133)(80,134)(81,137)(82,138)(83,139)(84,140)(85,119)(86,120)(87,117)(88,118)(89,151)(90,152)(91,149)(92,150)(93,155)(94,156)(95,153)(96,154)(97,159)(98,160)(99,157)(100,158)(101,163)(102,164)(103,161)(104,162)(105,213)(106,214)(107,215)(108,216), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216), (1,110,20)(2,111,17)(3,112,18)(4,109,19)(5,77,14)(6,78,15)(7,79,16)(8,80,13)(9,168,74)(10,165,75)(11,166,76)(12,167,73)(21,91,58)(22,92,59)(23,89,60)(24,90,57)(25,130,200)(26,131,197)(27,132,198)(28,129,199)(29,97,40)(30,98,37)(31,99,38)(32,100,39)(33,106,96)(34,107,93)(35,108,94)(36,105,95)(41,87,101)(42,88,102)(43,85,103)(44,86,104)(45,65,139)(46,66,140)(47,67,137)(48,68,138)(49,71,64)(50,72,61)(51,69,62)(52,70,63)(53,208,147)(54,205,148)(55,206,145)(56,207,146)(81,186,121)(82,187,122)(83,188,123)(84,185,124)(113,157,177)(114,158,178)(115,159,179)(116,160,180)(117,163,184)(118,164,181)(119,161,182)(120,162,183)(125,196,192)(126,193,189)(127,194,190)(128,195,191)(133,201,141)(134,202,142)(135,203,143)(136,204,144)(149,170,210)(150,171,211)(151,172,212)(152,169,209)(153,175,213)(154,176,214)(155,173,215)(156,174,216), (1,49,29)(2,50,30)(3,51,31)(4,52,32)(5,48,108)(6,45,105)(7,46,106)(8,47,107)(9,43,57)(10,44,58)(11,41,59)(12,42,60)(13,137,34)(14,138,35)(15,139,36)(16,140,33)(17,61,37)(18,62,38)(19,63,39)(20,64,40)(21,165,86)(22,166,87)(23,167,88)(24,168,85)(25,117,211)(26,118,212)(27,119,209)(28,120,210)(53,128,158)(54,125,159)(55,126,160)(56,127,157)(65,95,78)(66,96,79)(67,93,80)(68,94,77)(69,99,112)(70,100,109)(71,97,110)(72,98,111)(73,102,89)(74,103,90)(75,104,91)(76,101,92)(81,173,202)(82,174,203)(83,175,204)(84,176,201)(113,146,190)(114,147,191)(115,148,192)(116,145,189)(121,155,134)(122,156,135)(123,153,136)(124,154,133)(129,162,149)(130,163,150)(131,164,151)(132,161,152)(141,185,214)(142,186,215)(143,187,216)(144,188,213)(169,198,182)(170,199,183)(171,200,184)(172,197,181)(177,207,194)(178,208,195)(179,205,196)(180,206,193), (1,80,43)(2,77,44)(3,78,41)(4,79,42)(5,104,17)(6,101,18)(7,102,19)(8,103,20)(9,29,93)(10,30,94)(11,31,95)(12,32,96)(13,85,110)(14,86,111)(15,87,112)(16,88,109)(21,72,138)(22,69,139)(23,70,140)(24,71,137)(25,157,175)(26,158,176)(27,159,173)(28,160,174)(33,167,100)(34,168,97)(35,165,98)(36,166,99)(37,108,75)(38,105,76)(39,106,73)(40,107,74)(45,92,62)(46,89,63)(47,90,64)(48,91,61)(49,67,57)(50,68,58)(51,65,59)(52,66,60)(53,201,118)(54,202,119)(55,203,120)(56,204,117)(81,209,125)(82,210,126)(83,211,127)(84,212,128)(113,153,200)(114,154,197)(115,155,198)(116,156,199)(121,169,192)(122,170,189)(123,171,190)(124,172,191)(129,180,216)(130,177,213)(131,178,214)(132,179,215)(133,181,147)(134,182,148)(135,183,145)(136,184,146)(141,164,208)(142,161,205)(143,162,206)(144,163,207)(149,193,187)(150,194,188)(151,195,185)(152,196,186), (1,148)(2,145)(3,146)(4,147)(5,120)(6,117)(7,118)(8,119)(9,121)(10,122)(11,123)(12,124)(13,161)(14,162)(15,163)(16,164)(17,55)(18,56)(19,53)(20,54)(21,216)(22,213)(23,214)(24,215)(25,45)(26,46)(27,47)(28,48)(29,192)(30,189)(31,190)(32,191)(33,151)(34,152)(35,149)(36,150)(37,126)(38,127)(39,128)(40,125)(41,136)(42,133)(43,134)(44,135)(49,115)(50,116)(51,113)(52,114)(57,155)(58,156)(59,153)(60,154)(61,160)(62,157)(63,158)(64,159)(65,200)(66,197)(67,198)(68,199)(69,177)(70,178)(71,179)(72,180)(73,84)(74,81)(75,82)(76,83)(77,183)(78,184)(79,181)(80,182)(85,142)(86,143)(87,144)(88,141)(89,176)(90,173)(91,174)(92,175)(93,169)(94,170)(95,171)(96,172)(97,196)(98,193)(99,194)(100,195)(101,204)(102,201)(103,202)(104,203)(105,211)(106,212)(107,209)(108,210)(109,208)(110,205)(111,206)(112,207)(129,138)(130,139)(131,140)(132,137)(165,187)(166,188)(167,185)(168,186) );
G=PermutationGroup([[(1,148),(2,145),(3,146),(4,147),(5,143),(6,144),(7,141),(8,142),(9,198),(10,199),(11,200),(12,197),(13,202),(14,203),(15,204),(16,201),(17,206),(18,207),(19,208),(20,205),(21,210),(22,211),(23,212),(24,209),(25,166),(26,167),(27,168),(28,165),(29,115),(30,116),(31,113),(32,114),(33,176),(34,173),(35,174),(36,175),(37,180),(38,177),(39,178),(40,179),(41,184),(42,181),(43,182),(44,183),(45,188),(46,185),(47,186),(48,187),(49,192),(50,189),(51,190),(52,191),(53,109),(54,110),(55,111),(56,112),(57,169),(58,170),(59,171),(60,172),(61,193),(62,194),(63,195),(64,196),(65,123),(66,124),(67,121),(68,122),(69,127),(70,128),(71,125),(72,126),(73,131),(74,132),(75,129),(76,130),(77,135),(78,136),(79,133),(80,134),(81,137),(82,138),(83,139),(84,140),(85,119),(86,120),(87,117),(88,118),(89,151),(90,152),(91,149),(92,150),(93,155),(94,156),(95,153),(96,154),(97,159),(98,160),(99,157),(100,158),(101,163),(102,164),(103,161),(104,162),(105,213),(106,214),(107,215),(108,216)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192),(193,194,195,196),(197,198,199,200),(201,202,203,204),(205,206,207,208),(209,210,211,212),(213,214,215,216)], [(1,110,20),(2,111,17),(3,112,18),(4,109,19),(5,77,14),(6,78,15),(7,79,16),(8,80,13),(9,168,74),(10,165,75),(11,166,76),(12,167,73),(21,91,58),(22,92,59),(23,89,60),(24,90,57),(25,130,200),(26,131,197),(27,132,198),(28,129,199),(29,97,40),(30,98,37),(31,99,38),(32,100,39),(33,106,96),(34,107,93),(35,108,94),(36,105,95),(41,87,101),(42,88,102),(43,85,103),(44,86,104),(45,65,139),(46,66,140),(47,67,137),(48,68,138),(49,71,64),(50,72,61),(51,69,62),(52,70,63),(53,208,147),(54,205,148),(55,206,145),(56,207,146),(81,186,121),(82,187,122),(83,188,123),(84,185,124),(113,157,177),(114,158,178),(115,159,179),(116,160,180),(117,163,184),(118,164,181),(119,161,182),(120,162,183),(125,196,192),(126,193,189),(127,194,190),(128,195,191),(133,201,141),(134,202,142),(135,203,143),(136,204,144),(149,170,210),(150,171,211),(151,172,212),(152,169,209),(153,175,213),(154,176,214),(155,173,215),(156,174,216)], [(1,49,29),(2,50,30),(3,51,31),(4,52,32),(5,48,108),(6,45,105),(7,46,106),(8,47,107),(9,43,57),(10,44,58),(11,41,59),(12,42,60),(13,137,34),(14,138,35),(15,139,36),(16,140,33),(17,61,37),(18,62,38),(19,63,39),(20,64,40),(21,165,86),(22,166,87),(23,167,88),(24,168,85),(25,117,211),(26,118,212),(27,119,209),(28,120,210),(53,128,158),(54,125,159),(55,126,160),(56,127,157),(65,95,78),(66,96,79),(67,93,80),(68,94,77),(69,99,112),(70,100,109),(71,97,110),(72,98,111),(73,102,89),(74,103,90),(75,104,91),(76,101,92),(81,173,202),(82,174,203),(83,175,204),(84,176,201),(113,146,190),(114,147,191),(115,148,192),(116,145,189),(121,155,134),(122,156,135),(123,153,136),(124,154,133),(129,162,149),(130,163,150),(131,164,151),(132,161,152),(141,185,214),(142,186,215),(143,187,216),(144,188,213),(169,198,182),(170,199,183),(171,200,184),(172,197,181),(177,207,194),(178,208,195),(179,205,196),(180,206,193)], [(1,80,43),(2,77,44),(3,78,41),(4,79,42),(5,104,17),(6,101,18),(7,102,19),(8,103,20),(9,29,93),(10,30,94),(11,31,95),(12,32,96),(13,85,110),(14,86,111),(15,87,112),(16,88,109),(21,72,138),(22,69,139),(23,70,140),(24,71,137),(25,157,175),(26,158,176),(27,159,173),(28,160,174),(33,167,100),(34,168,97),(35,165,98),(36,166,99),(37,108,75),(38,105,76),(39,106,73),(40,107,74),(45,92,62),(46,89,63),(47,90,64),(48,91,61),(49,67,57),(50,68,58),(51,65,59),(52,66,60),(53,201,118),(54,202,119),(55,203,120),(56,204,117),(81,209,125),(82,210,126),(83,211,127),(84,212,128),(113,153,200),(114,154,197),(115,155,198),(116,156,199),(121,169,192),(122,170,189),(123,171,190),(124,172,191),(129,180,216),(130,177,213),(131,178,214),(132,179,215),(133,181,147),(134,182,148),(135,183,145),(136,184,146),(141,164,208),(142,161,205),(143,162,206),(144,163,207),(149,193,187),(150,194,188),(151,195,185),(152,196,186)], [(1,148),(2,145),(3,146),(4,147),(5,120),(6,117),(7,118),(8,119),(9,121),(10,122),(11,123),(12,124),(13,161),(14,162),(15,163),(16,164),(17,55),(18,56),(19,53),(20,54),(21,216),(22,213),(23,214),(24,215),(25,45),(26,46),(27,47),(28,48),(29,192),(30,189),(31,190),(32,191),(33,151),(34,152),(35,149),(36,150),(37,126),(38,127),(39,128),(40,125),(41,136),(42,133),(43,134),(44,135),(49,115),(50,116),(51,113),(52,114),(57,155),(58,156),(59,153),(60,154),(61,160),(62,157),(63,158),(64,159),(65,200),(66,197),(67,198),(68,199),(69,177),(70,178),(71,179),(72,180),(73,84),(74,81),(75,82),(76,83),(77,183),(78,184),(79,181),(80,182),(85,142),(86,143),(87,144),(88,141),(89,176),(90,173),(91,174),(92,175),(93,169),(94,170),(95,171),(96,172),(97,196),(98,193),(99,194),(100,195),(101,204),(102,201),(103,202),(104,203),(105,211),(106,212),(107,209),(108,210),(109,208),(110,205),(111,206),(112,207),(129,138),(130,139),(131,140),(132,137),(165,187),(166,188),(167,185),(168,186)]])
120 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | ··· | 3M | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6AM | 12A | ··· | 12AZ |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 27 | 27 | 27 | 27 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 27 | 27 | 27 | 27 | 2 | ··· | 2 | 2 | ··· | 2 |
120 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | S3 | D6 | D6 | C4×S3 |
kernel | C2×C4×C33⋊C2 | C4×C33⋊C2 | C2×C33⋊5C4 | C3×C6×C12 | C22×C33⋊C2 | C2×C33⋊C2 | C6×C12 | C3×C12 | C62 | C3×C6 |
# reps | 1 | 4 | 1 | 1 | 1 | 8 | 13 | 26 | 13 | 52 |
Matrix representation of C2×C4×C33⋊C2 ►in GL7(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 |
8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[8,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,12],[1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,1] >;
C2×C4×C33⋊C2 in GAP, Magma, Sage, TeX
C_2\times C_4\times C_3^3\rtimes C_2
% in TeX
G:=Group("C2xC4xC3^3:C2");
// GroupNames label
G:=SmallGroup(432,721);
// by ID
G=gap.SmallGroup(432,721);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,58,1124,4037,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^4=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations